
NASA Technical Memorandum 104369

ICOMP _ 91- 07; CMOTT 91-02

_f /J

I/'7o

Second Order Modeling of Boundary-
Free Turbulent Shear Flows

_NASA-TM-I04369) SECOND OROER MODELING OF N91-2252% "'_4_

BOUNDARY-FREE TURBULENT SHEAR FLOWS (NASA) ..

17 p CSCL 20D _-_-=_
Unc]_]s

G3/34 O011705

T.-H. Shill

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition
Lewis Research Center

C el_eTand, Ohio

J.'Y. Chert

Sandia National Laboratories

Livermore, California

and

J.L. Limley

Cornell University
I th-a-c-a,-New York

May 1991

NASA

= - 5 S S-_ i





Second Order Modeling of "

Boundary-Free Turbulent Shear Flows

T.-H. Shih

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition

Lewis Research Center

Cleveland, Ohio

J.-Y. Chen

Sandia National Laboratories

Livermore, California

J.L. Lumley

Cornell University

Ithaca, New York

Abstract

This paper presents a set of realizable second order models for boundary free turbulent

flows. The constraints on second order models based on the realizability principle are re-

examined. The rapid terms in the pressure correlations for both the Reynolds stress and

the p_sive scalar flux equations arc constructed to exactly satisfy the joint realizability.

All other model terms (return-to-isotropy, third moments and terms in the dissipation

equations) already satisfy realizability (Lumley 1978, Shih and Lumley 1986). To correct

the spreading rate of the axisymmetric jet, an extra term is added to the dissipation

equation which accounts for the effect of mean vortex stretching on dissipation. The test

flows used in this study are the mixing shear layer, plane jet, axisymmetric jet and plane

wake. The numerical solutions show that the new unified model equations (with unchanged

model constants) predict all these flows reasonably as the results compare well with the

measurements. ' We expect that these model equations would be suitaMe for more complex

and critical flows.

I. Introduction

The second order closure scheme has been studied for over two decades now and it is

playing an increasingly important role in the computation of turbulent flows, fi)r example,

in atmospheric turbulence and turbulent confl)ustion. So far this method has achieved

success in predicting many different flows (Launder et al [1], Lumley et a.1[21, Shih and

Lumley[3], Shih [4], Chen[ 5] and Ettestad[61). However, as SchumannFl and Lumley Is] have

pointed out, many of the second order model equations are not realizable because the

models for the pressure correlations in the second moment equations do not satisfy the

realizability constraints. They also pointed out that this may cause severe numerical dif-

ficulties and produce unphysical results during a numerical computation; such as giving

negative turbulent energy or producing correlation coefficients larger than unity in cer-

tain critical situations. Hence, there is a strong need for improving second order model

equations for both theoretical reasons and practical needs. In this paper we follow Shih



and Lumley[91to directly impose the realizability principle (including joint realizability
between the velocity and passivescalar) in the model development and obtain a set of
model forms for the rapid part of the pressurecorrelations. In addition, an extra term is
added to the dissipation equation which reflects the effect of the mean vortex stretching
on the dissipation.

In order to discussvarious model terms appearing in the secondmoment equations,
let us write down the exact equationsfor the meanquantities and various secondmoments
for incompressibleflows (including passivescalar):

Ui, i = 0

1
D,tUi = --P,i - (_),j + tzUi,jj

P

D,tF =-(fuj),j + 7F, jj

l
D,,uiuj =-[uiujuk +-(p(2)uiSjl,. + p(2)'ujS/k.)],_.

P

+/,)-u_U_,_ - u_,kUi,k -- -_
1

+ --(p(2)_ti,j + p(2)uj,i) -- 2V_li,kttj, k
P

D,tfui = --[f_littj + lp(2) fSij],j
P

1 _(j)

- _F,j - fujUi,j - -fit-',i J

+ lp(2)fj-(u + "_')f, jui,j
P

D,,77 = _(-f2 u j ),j - 2.f u j F,j - 27 f ,j .f,i

(1)

(2)

(3)

(4)

(5)

(G)

where Ui, F and P are the mean velocity, mean scalar and pressure, and ui, f and p are their

corresponding fluctuating quantities. Here, we have employed the summation convention

on the indices and the following notations: ( ),i = _ D,( ) = o + Uk( ),_.. For theOxi

pressure fluctuation, the following Poisson equation must be satisfied:

1
--p,jj = 2Ui,fflj,i + tti,j7lj,i - Izi,jttj,i (7)

t)

Based on the linearity of p, we have split the pressure fluctua.tion into two parts: p(1) and

p(2), called the rapid and slow pressures respectively:

1 (_)

--fip,jj = 2Vi,j_tj, i
(s)

1 _(2)

---_p,jj = tti,jTlj,i (9)



Note that the pressuregradient correlation terms involving'p(2) (slow pressure)in the Eqs.
(4) and (5) havebeenseperatedinto a pressuretransport and a pressurestrain (or pressure
scalar gradient) correlation.

For homogeneousturbulence, using the solution of the Poissonequation (8), we may
write

1 (1)o.. dv (10)
--_P,i =' = -2Up,ql f [uq(r)ui(r')]'VJ lr - r'l

V

1_(1) 1 f dv-pP,i f -- --2Uj,k-'_ [uk(,')/(r')],ijt,._,.,i (11)
V

Equations (10) and (11) may give us a hint on how to construct models for the rapid

pressure terms.

For convenience, one often defines _ = l,Ui,klti,k, ey = ?f, kf, k. They represent the

mechanical and sc.alar dissipation rates respectively and must be modeled. Their transport

equations may be written as follows

D,,7 = -(e-_j),j - _7 _

- 2

(12)

(13)

Here, q and if21 contain all the constructive and destructive terms of the dissipations (see

section II), and q2 = iti?ti"

Lumley[Sl suggested that the slow pressure strain (or pressure scalar gradient) cor-

relation term and the viscous dissipation term in the second moment equations can be

combined and modeled together, because they are both related to only purly turbulent

quantities. Therefore, we write

2-5.. (14)
--g2ij-_ = lp(2)(ui,j Jr uj,i) -- 2tJtti,kuj,k + 3 e ,j

P

-i _ lp(2) f, i _ (_, + 7)f,jTti,j (15)
_' q_ p

For the rapid terms, Eqs.(10) and (11), we need to model two integrals:

1 / ., . dv (16)ZPjqi= - 4-'-_ [u_(r)ui(, ],._ T'I
V

1 / dv (17)lift, = -4--'_ [uk(r)f(r')],ij I,"- ,"1
V

In the next section, we will discuss the realizability principle and use it to construct

the models for various unknown correlations in the second moment equations. In section
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III, we test thesemodels in the boundary3freeshear flowsi mixing shear layer, plane jet
and axisymmetric jet, and plane wake. The calculations show that the present models
(with unchangedmodel constants) predict all these flows reasonablyas the results show
good agreementwith the measurements.

II Second Order Closure

Realizability Principle
The concept of realizability was first introduced by Schumann[rl and Lumley[81.The

basic idea is that any non-negative turbulent quantities (say, turbulent energy compo-
nents, intensity of scalar fluctuations, etc.) must remain positive during the evolution
of turbulence, and Schwarz' inequality bctwcen any turbulence quantities (say, between
fluctuating velocities and scalars) must be satisfied at all the time. The exact turbulent
equationsderived from the Navier-Stokesequation, for example,Reynoldsstressand scalar
flux equations,possessthesephysical and mathematical properties, i.e. the solution of the
cxact turb.ulent equations satisfiesrealizability. However, modeled turbulence equations,
obtained by various approximations from the Navier-Stokes equation, often violate real-

izability and produce unphysical results. In fact, so far none of the second order closure

models, with the exceptions of Shih and Lumley[ 9] and Ristorcelli[1°], satisfy complete rc-

alizability (which includes joint realizability between velocity and scalar). In this section,

we will discuss turbulence models based on realizability. To do that, we define a corre-

lation tensor Dij = f2uiuj - fui fuj which consists of the Reynolds stress and scalar

flux. Lumley[ s], Shih and Lumley[q argued that the realizability principle stated above is

equivalent to that of non-negativity of the eigenvalues of both the Reynolds stress tensor

Rij = uiuj and the correlation tensor Dij. That is, those eigenvalues must remain posi-

tive during the evolution of turbulence. The simplest way to ensure this realizability is to

require that the first derivative of the eigenvalues should vanish and the second derivative

should remain positive if the eigenvalues vanish, scc Figure 1. If wc designate the cigenval-

ues of the Reynolds stress tensor and the correlation tensor by R_c, and D_o, respectively

(no summation convention for Greek indices) we may write these realizability conditions
as

D,Ro,,_ ---, 0 if R_,,_ _ 0 (18)

D,tD_.e, ---+ 0 if D_c, ---+ 0 (19)

D,,,R,_,_ >_ 0 if R_,,_ --+ 0 (20)

D,,,Dc, a >_ 0 if Do, o, ---+ 0 (21)

Eqs.(18) and (19) are the necessary conditions for realizability, and Eqs.(20) and (21)

together with (18) and (19) will provide the necessary and sufficient conditions for realiz-

ability. For more details, see Lumley[ 11] and Shih et al [12].

To impose the realizability conditions on various model terms in the equations for

the second moments, We need the equations for the eigenvalues of Rij and Dij. In other

words, we need the equations for Rij and Dij in the principle axes of Rij and Dij. In the
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principle axesof Rij, the Reynolds stress equation (4) becomes

1 _ 2_72U0,,o 'D t_ = -[_uk + 2--p(_)uo_k],k
P

2

+ 4Up,qIpoq_ - (_, + -3)_ (22)

where u"-_ are the eigenvalues of Rij. Now, if we impose the realizability condition (18)

on Eq.(22), we may obtain a set of constraints for the model terms in the Reynolds stress

equations:

Up,qIpc_qc_ _ 0 if U_ _ 0 (23)

2

('_,o,+-_)-i _ 0 if u_ _ 0 (24)

(u_uk +21p(2)Ua(Sak),k _ 0 if u--_ _ 0 (25)
P

Similarly, we may write an equation for Dij in its principle axes and impose the real-

izability condition (19) to obtain the following constraints o11 the model terms appearing

in both the Reynolds stress and the scalar flux equations:

Up,q(Y[po_qo_ - fuo.Z_pq) _ 0

if D_,, ---+ 0 (26)

2_fu_q_ - f2(,I%,_ + _)g-
---, 0

if D_ _ 0 (27)

2.fu,_(fu,_,t_. + 1--p(2)f3,:,k),k
P

1 .
- (f2u2uk + --P(2)U,_6,_k),k -- U_ (]'2U;, -),;,-

P

if D_,_, _ 0

--_ 0

(28)

The constraints (23-28) on each model term in the Reynolds stress and the scalar flux

equations will ensure that the model equations satisfy realizability. The models proposed

by Lumley [8] for the third moments and the slow term _ij, and the model 'I'i proposed by

Shih and Lum- ley [31 already satisfy the abovementioned constraints. What we need here

are the models for the rapid terms: [pjqi and Iijk. These terms are usually very important

terms in the Reynolds stress and flux equations. Unfortunately, many existing models do

not satisfy the conditions (23-28), and therefore, may produce unphysical results.

Models of the Rapid Terms

In the past it has been customary to express [pjqi as a simple linear flmction of bij

and Iijk as a simple flmction of fui. "V\;e find that it is impossible for these forms to
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satisfy realizability. The most general forms were first proposed 1)5, Shih and Lumley[91
(also seeShih et a1112]).Here, weadopt simpler forms for Ipjqi and Iijk which are capable

of satisfying realizability:

fpjqi

q2
-- O:l _qi_pj "Jl- Ol2( _pq_i j "]- 6qj(_pi )

-t- OQ_qibpj + o'461,jbqi

+ ,_5(6pqb_j+ 6ijb_,q+ 6iqbp_ + 6p_bq_)
2 2

+ o_6_qibpj -4- OlT_pjbqi

2 2 2
-4- o_8(t_t, qbi 2 + _ijbpq -Jr _jqbpi + (_pibqj)

+ ot9bqibpj + o'lo(bpqbij + bqjbpi)

2 2
"4- Ogll bqibpj + o_12bl,jbqi

2 2 2
+ oq3(bpqbi5 + bljbpq + bqjbpi + bpibqj) (29)

Iikj ---- fll_ikOUj nl- fl'2(_ijOUk + (_jkOtti) -1-/_3bikOUj

-4- fl4(bijOUk + bjkOui) -t-/35(_ijbkp -4- (_t,.jblt,)Ou l,

"t- fl6_ikbjpO'Up -}- fl7bikbjl, Ott p

+ fls(bijbkp + bkjbip)OUp -+- flgb2k'O-ua)

2

2
"4- _12(_ijb2.p -JF _jk b2 )O_p -1- fll3bikbjl, O,tpp

2 __ 2 )+ fll4bikbjpOUp + fllo(bij[k p + b2jbip)OUp (30)

where bij uiu" 1"_Sij= -_ - is called the anisotropy tensor of the Reynolds stress. The coeffi-

cients a_ and/3i in Eqs. (29) and (30) are, in general, functions of the invariants of b_j and

Dij. However, for passive scalar turbulence, c_i should be only a fimction of the invariants

of bij. These coefficients need to be determined. To achieve this, we recall the definitions

of Ipjq, and I, jk, i.e., Eqs.(16) and (17), and find that they have the following properties:

Zpjqi = fjpqi, fpjqi = [l, jiq, Iijk = [jik

fppqi = ltqlti, fpkqk _- O, [pl, k = fuk, fikk = 0

(31)

(32)

We notice that Eqs.(29) and (30) already satisfy the condition imposed by Eq. (31). If we

use the condition (32) and the realizabi!ity constraints (23) and (26), we may deterlnine

the limiting values of all the coefficients. The final expressions are surprisingly simple:

fpjqi

q2
-- -" (45pjSqi -- 5pqSij -- 5qjSpi )30

1 (Sqibpj -- 5pjbqi) + al(Spqbij 4- 5ijbpq 4- 5qjbpi
3

q- _pibqj -- _-_qibpj
4

-- -_pjbqi),3



+ a2(26jb_i- 3b_qb,j- 3_qibp,+ _q_b.) (33)

2 1 (&kouj + 6ik-_u_)Y_ik= -g6oOuk-

T CDlbijOUk

4- CD2(bikOuj "Jc bjkOUi) ']- CD3_ijbktOltt, (34)

where the limiting values of the coefficients are

1 1

a, =-i-6, a2 = i-6'
1 3 1

Co, = "1"0' CD2 = --1-"0' CD3 = _. (35)

The last line in (33) and the last two lines in (34) represent the non-linear contribution

and if neglected, the linear models used by various other workers will be recovered. It is

important to note that the above values of the coefficients al, a2, Co,, CD2, and CD3

are their limiting values at the realizability limit, i.e. when uou,_, D,_ _ 0. For general

turbulent flows u,_u,_ and D_o, are not zero and hence the values of the coefficients may

deviate from their limiting values. They are, in general, functions of the invariants II and

III for al and a2, and the invariants formed from bit and fui for CDi. Some guidance can

be obtained by inspecting the following two useful parameters (see Lumley [81 and Shih

and Lumley [3]):

F = 1 + 27III + 9II (36)

27d2 9
Fd = 9 d3i - --_ ii + -_, (37)

where
12 13

I[ = 2bii, IZ! = 3bii

f2 uiW -fui fuj

It can be shown that both F and Fd lie between 0 and 1, and particularly

F ---) O when u_,u,_ _ O

Fd ---* 0 when D,_, _ 0

By using this information, it is convenient to write

• 1

a, =--i-_(1 + AF _') (38)

1

' a2 = _--_(1 + BE") (39)

1

Co, = -_ + C, F2 (40)

-3

CD2 -- 10 + C2F_ (41)

1

CD3 = -_ + C3F_ (42)
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where A, B, C1, (72 and C3 are adjustable constants but o' 'is not ,as arbitrary as it might

I (see Lumley[ 11] or Shihseem at first look. The conditions (20) and (21) suggest a = 7

and Lumley [31). In the limiting case these coefficients reach their limiting values. Shih et

al. [aal took A = 0.8 and B = 0.0 which fit the DNS data quite well. Shih et al. [14][15] set

C1 = C2 = Ca = 0 in their computations.

Models of Other Terms

The focus of this paper is on the calculation of the velocity field in the boundary-

free flows. Therefore, here we list only the rclated models for the pressure transport, the

third moments, and the return-to-isotropy terms in the second moment equations and the

models for the dissipation equation. All these models were proposed by Lumley[ s], and

they satisfy the realizability conditions discussed in thc section II.

Pressure transport term:
i

__p[2lui = Cq2'ai
P

where C is a constant, and Lumley[ s] suggested C = 0.2.

(43)

Third moments:

1 q2

+ _(_),p + _(_),,,]

fl - 2 [_ijq2tt k nt- 5ikq2u ¢ -t- 8jkq2ui "]+-7
3 q2

qzuk-- 4/3+10 7 [_@ +2_ ukuq,p]

(44)

(45)

Return-to-isotropy term:

r_ij = flbij

fl=2+exp( 7.77 ){ 72
Re1�. _ Re1� 2 + 80.11n[1

I

-t- 62.4(-//+ 2.3HI)] } (-d + 3[ZI + II)

Model terms in the dissipation equation:

?lk_l q _lq_tp ]9q_/_ -e. [_ + 2
eUk = -5(4fl + 10) q_- J

q2
lI/ ---- ¢0 .ql_ _"1 -- bij Ui,j

£

14 2.83

%= -g-+
- 0.331n(1- 55H)] + 0_o_

8

(46)

(47)

(4s)

(49)

(50)



where ¢1 = 2.4 is a model constant. The term ¢co_ is similar to that proposed by Pope [161,

which represents the effect of mean vortex stretching on the dissipation:

¢cor 1.25(1 F) °'1 q2 3
= -- (_) (Ui,j - Uj,i)(Uj,k

- Uk,j)(Uk,_ + g_,k) (51)

For isotropic turbulence (F = 1), ¢_o,- becomes zero. For planar flows, ¢co.r is also

zero because there is no mean vortex stretching. With this extra term in the dissipation

rate equation, the spreading rates are predicted very well for both the planar and the

round jets.

III Boundary-Free Shear flows

This section presents the results of calculations for some boundary free turbulent shear

flows including the two dimensional mixing shear layer, planar jet, axisymmetric jet, and

two-dimensional wake. The numerical solutions were obtained by simultaneously solving

the set of equations for the mean momentum Ui, Reynolds stress ltiU j and dissipation

-g. All the model constants in the equations remain the same for all the test flows. For

these thin shear layer flows, we have adopted the boundary layer approximations, and,

therefore, the modeled equations are parabolic (we have kept the viscous diffusion terms

in the modeled equations). The numerical scheme is based on the method of Patankar and

Spalding[171,[lsl.

The boundary conditions imposed on these flows are the following: for the mixing

layer, the upper and lower free stream velocities have specified values, the derivatives with

respect to the transverse direction of all other variables at the upper and lower boundaries

have been set to zero. For the jets, the free stream velocity is zero, and the turbulent

shear stress is set to zero at the center line of the jets. The transverse deriw_tives of all

other variables at the boundaries are zero (including the mean velocity at the center line).

For the two-dimensional wake, the free stream velocity has a specified value. All the other

boundary conditions are the same as for the jets.

The initial profiles of all the quantities are arbitrary smooth profiles. The calculations

show that all the solutions had reached self-preservation. All the figures presented here

are from the far field solutions.

Figures 2, 3 and 4 show the profiles of the mean velocity, turbulent shear stress and

energy components for the mixing layer. The experimental data were taken from Bradshaw

et al [191, Castro [2°1 and Gutmark & Wygnanski [211. The computed mean velocity is in

very good agreement with the measurements. The shear stress profile is also satisfactory.

The experimental data of the energy components possess scatter but the model shows

reasonable agreement with the experiments. The spreading rate (defined as dh/dx, h

being the lateral distance between the positions where the velocity is 90% and 10% of the

free stream) is calculated to be 0.13, which is also within the experimental scatter.

Figures 5, 6, 7, 8 and 9 show the profiles of the mean velocity, shear stress and en-

ergy components for the planar jet. The measurements were taken from Bradbury [221,

Heskestad [231, and Gutmark & Wygnanski [211. The prediction of the mean velocity is in
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good agreement with the measurements except in the region Y(X-Xo) > 0.1, where the

model gives a slight underestimation. The calculations of the shear stress, streamwise and

transverse energy components are within the scatter of tile experimental data. However,

the lateral energy component is apparently overestimated with respec___t_tto__the measure-

ments. It should be pointed out that this set of measurements shows w 2 < v 2 and this is

not consistent with the measurements for other shear flows (say, the mixing layer, wake

and axisymmetric jet). The calculated spreading rate (defined by dY..5/dx, Y..5 being the

position where the velocity is the 50% of the centerline velocity of the jet) is 0.11 which is

very close to the measurements.

Figures 10, 11, 12, 13 and 14 show the profiles for the mean velocity, shear stress

and energy components in the axisymmetric jet. The calculations are compared with the

measurements of Abbiss et al [24], Wygnanski & Fied!er [25] and Rodi [2G]. The predictions for

all the quantities are in good agreement with the measurements. Thc calculated spreading

rate (defined as the same as in the planar jet) is 0.09 which is also very close to the
measurements.

Finally, figures 15, 16 and 17 show the profiles for the mean velocity, shear stress and

energy components in the two-dimensional wake. Usually the 2D wake is a strongly non-

equilibrium flow. In our calculation, it takes more time for the solution to approach self

preservation as compared with the solutions of the mixing layer and jets. The predictions

of various quantities agree reasonably well with the measurements at the far field of the

wake, even though the measured wakes arc probably not becoming self-similar yet.

From the above calculations and comparisons, we conclude that the model based

on the realizability concept performs quite well for typical boundary-free turbulent shear

flows. The modeled equations are realizable and will not produce unphysical results, and

therefore, we expect that the present model would be suitable for more complex flows.
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